How do you integrate int x^3cos(x^2) using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Eddie Aug 28, 2016 = 1/2 x^2 sin(x^2) + 1/2cos(x^2) + C Explanation: int x^3cos(x^2) int x^2 . x cos(x^2) = int x^2 d/dx (1/2 sin(x^2)) ready for IBP = 1/2 x^2 sin(x^2) - 1/2 int d/dx (x^2) sin(x^2) = 1/2 x^2 sin(x^2) - int x sin(x^2) = 1/2 x^2 sin(x^2) - int d/dx ( - 1/2cos(x^2)) = 1/2 x^2 sin(x^2) + 1/2cos(x^2) + C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 2760 views around the world You can reuse this answer Creative Commons License