How do you integrate int x^3 t an x dx using integration by parts?

1 Answer
Jan 7, 2016

intx^3tan(x)dx = ln|cos(x)|(x^3 - 3x^2 + 6x - 6 + c)

Explanation:

Say dv = tan(x) so v = ln|cos(x)|
And u = x^3 so du = 3x^2

intx^3tan(x)dx = x^3*ln|cos(x)| - 3inttan(x)*x^2dx

For the latter integral, repeat

dv = tan(x) so v = ln|cos(x)|, u = x^2 so du = 2x

intx^3tan(x)dx = x^3*ln|cos(x)| - 3(x^2ln|cos(x)| - 2inttan(x)xdx)
intx^3tan(x)dx = x^3*ln|cos(x)| - 3x^2ln|cos(x)| + 6inttan(x)xdx

And once more to finish it

dv = tan(x) so v = ln|cos(x)|, u = x so du = 1

intx^3tan(x)dx = x^3ln|cos(x)| - 3x^2ln|cos(x)| + 6(xln|cos(x)| - ln|cos(x)| + c)

intx^3tan(x)dx = x^3ln|cos(x)| - 3x^2ln|cos(x)| + 6xln|cos(x)| - 6ln|cos(x)| + c

Or

intx^3tan(x)dx = ln|cos(x)|(x^3 - 3x^2 + 6x - 6 + c)