How do you integrate int x^3 sin x^2 dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Cesareo R. Sep 24, 2016 1/2(sin(x^2)-x^2cos(x^2))+C Explanation: d/dx(x^2cos(x^2))=2xcos(x^2)-2x^3sin(x^2) but 2xcos(x^2)= d/dx(sin(x^2)) so d/dx(x^2cos(x^2)) = d/dx(sin(x^2))-2x^3sin(x^2) then int x^3sin(x^2)dx = 1/2(sin(x^2)-x^2cos(x^2))+C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 4322 views around the world You can reuse this answer Creative Commons License