How do you integrate int x^3 sin x^2 dx using integration by parts?

1 Answer
Sep 24, 2016

1/2(sin(x^2)-x^2cos(x^2))+C

Explanation:

d/dx(x^2cos(x^2))=2xcos(x^2)-2x^3sin(x^2)

but 2xcos(x^2)= d/dx(sin(x^2)) so

d/dx(x^2cos(x^2)) = d/dx(sin(x^2))-2x^3sin(x^2)

then

int x^3sin(x^2)dx = 1/2(sin(x^2)-x^2cos(x^2))+C