How do you integrate int x^3 ln x^2 dx x3lnx2dx using integration by parts?

1 Answer
Oct 5, 2016

x^4/8(4lnx-1)+Cx48(4lnx1)+C

Explanation:

Let I=intx^3lnx^2dxI=x3lnx2dx

Using the Subst. x^2=t", we have, "2xdx=dt, or, xdx=1/2dt.x2=t, we have, 2xdx=dt,or,xdx=12dt. Hence,

I=int(x^2lnx^2)xdx=1/2inttlntdt.I=(x2lnx2)xdx=12tlntdt.

Now, to this end, we will use the Rule of I ntegration byParts arts :

IBP : intuvdt=uintvdt-int{(du)/dtintvdt}dt.IBP:uvdt=uvdt{dudtvdt}dt.

We take u=lnt rArr (du)/dt=1/t, &, v=trArr intvdt=t^2/2u=lntdudt=1t,&,v=tvdt=t22

:. I=1/2[t^2/2lnt-int(1/t*t^2/2)dt]

=t^2/4lnt-1/4inttdt=t^2/4lnt-t^2/8

Returning t" by "x^2, we have,

I=x^4/4ln(x^2)-1/8x^4

Here, we use the Rule of Logarithm : lnx^2=2lnx & get,

I=x^4/2lnx-x^4/8=x^4/8(4lnx-1)