How do you integrate int x^3 ln 2x dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Eddie Jun 21, 2016 ln(2x) \frac{x^4}{4} - \frac{x^4}{16} + C Explanation: Using the formulation \int u v' \dx= [uv] - \int u' v \dx with u = \ln (2x), u' = \frac{1}{2x}.2 = \frac{1}{x} and v' = x^3, v = \frac{x^4}{4}, we get ln(2x) \frac{x^4}{4} - \int \frac{1}{x} .\frac{x^4}{4} \dx = ln(2x) \frac{x^4}{4} - \int \frac{x^3}{4} \dx = ln(2x) \frac{x^4}{4} - \frac{x^4}{16} + C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 8499 views around the world You can reuse this answer Creative Commons License