How do you integrate int x^3 ln 2x dx using integration by parts?

1 Answer
Jun 21, 2016

ln(2x) \frac{x^4}{4} - \frac{x^4}{16} + C

Explanation:

Using the formulation \int u v' \dx= [uv] - \int u' v \dx

with u = \ln (2x), u' = \frac{1}{2x}.2 = \frac{1}{x}

and v' = x^3, v = \frac{x^4}{4}, we get

ln(2x) \frac{x^4}{4} - \int \frac{1}{x} .\frac{x^4}{4} \dx

= ln(2x) \frac{x^4}{4} - \int \frac{x^3}{4} \dx

= ln(2x) \frac{x^4}{4} - \frac{x^4}{16} + C