How do you integrate int x^2lnabs(x) by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Martin C. Feb 2, 2018 1/9x^3(3ln(x)-1) Explanation: Integration by parts: int(v'*u)=u*v-int(v*u') Let u=ln(x), u'=1/x and v'=x^2,v=1/3x^3 int(x^2ln(x)) =1/3x^3ln(x)-int(1/3x^(cancel(3) 2)*1/cancel(x) =1/3x^3ln(x)-1/9x^3 =1/9x^3(3ln(x)-1) Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1774 views around the world You can reuse this answer Creative Commons License