How do you integrate int x^2cos(3x) by integration by parts method?

1 Answer
Feb 3, 2017

1/27(9x^2-2)sin3x+(2x)/9cos3x+C

Explanation:

Integration by parts formula

I=intuv'dx=uv-intvu'dx

intx^2cos3xdx

u=x^2=>u'=2x

v'=cos3x=>v=1/3sin3x

:.I_1=x^2/3sin3x-int[(2x)/3sin3x]dx

:.I_1=x^2/3sin3x-2/3color(blue)(int[xsin3x]dx)

we now have to use IBP on the integral highlighted in blue

I_2=(int[xsin3x]dx)

u=x=>u'=1

v'=sin3x=>v=-1/3cos3x

I_2=(-x/3cos3x-int-1/3cos3xdx)

I_2=-x/3cos3x+1/9sin3x

substituting back into I_1

:.I_1=x^2/3sin3x-2/3(-x/3cos3x+1/9sin3x)+C

:.I_1=x^2/3sin3x+(2x)/9cos3x-2/27sin3x+C

I_1=(x^2/3-2/27)sin3x+(2x)/9cos3x+C

I_1=1/27(9x^2-2)sin3x+(2x)/9cos3x+C