How do you integrate #int x*2^x# by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Eddie Aug 3, 2016 #=2^x/ (ln 2) ( x - 1/ (ln 2) ) + C# Explanation: firstly know that #d/dx ( a ^x ) = ln a \ a^x# So #int x*2^x \ dx# #= int x d/dx( 1/ ln 2 2^x) \ dx# #= x/ ln 2 2^x - int d/dx(x) 1/ ln 2 2^x\ dx# #= x/ ln 2 2^x - 1/ ln 2 int 2^x\ dx# #= x/ ln 2 2^x - 1/ ln 2 int d/dx( 1/ ln 2 2^x)\ dx# #= x/ ln 2 2^x - 2^x 1/( ln 2 )^2+ C# #=2^x/ (ln 2) ( x - 1/ (ln 2) ) + C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 1215 views around the world You can reuse this answer Creative Commons License