How do you integrate int x^2 e^(-x) dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Lovecraft Jan 9, 2016 I = -e^(-x)(x^2 + 2x + 2) + c Explanation: I = intx^2e^(-x)dx Say u = x^2 so du = 2x and dv = e^(-x) so v = -e^(-x) I = -x^2e^(-x) + 2intxe^(-x)dx Say u = x so du = 1 and dv = e^(-x) so v = -e^(-x) I = -x^2e^(-x) + 2(-xe^(-x) + inte^(-x)dx) I = -x^2e^(-x) -2xe^(-x) + 2inte^(-x)dx I = -x^2e^(-x)-2xe^(-x)-2e^(-x)+c I = -e^(-x)(x^2 + 2x + 2) + c Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1675 views around the world You can reuse this answer Creative Commons License