How do you integrate int x^2 cos3 x dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Lovecraft Jan 9, 2016 I = (9x^2sin(3x) +18xcos(3x) -2sin(3x))/9 + c Explanation: I = intx^2cos(3x)dx Say u = x^2 so du = 2x and dv = cos(3x) so v = sin(3x)/3 I = (x^2sin(3x))/3 - 2/3intxsin(3x)dx Say u = x so du = 1 and dv = sin(3x) so v = -cos(3x)/3 I = (x^2sin(3x))/3 - 2/3(-xcos(3x) +1/3intcos(3x)dx) I = (x^2sin(3x))/3 - 2/3(-xcos(3x) +sin(3x)/9) + c I = (9x^2sin(3x) +18xcos(3x) -2sin(3x))/9 + c Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 3105 views around the world You can reuse this answer Creative Commons License