How do you integrate int x^2 cos3 x dx using integration by parts?

1 Answer
Jan 9, 2016

I = (9x^2sin(3x) +18xcos(3x) -2sin(3x))/9 + c

Explanation:

I = intx^2cos(3x)dx

Say u = x^2 so du = 2x and dv = cos(3x) so v = sin(3x)/3

I = (x^2sin(3x))/3 - 2/3intxsin(3x)dx

Say u = x so du = 1 and dv = sin(3x) so v = -cos(3x)/3

I = (x^2sin(3x))/3 - 2/3(-xcos(3x) +1/3intcos(3x)dx)

I = (x^2sin(3x))/3 - 2/3(-xcos(3x) +sin(3x)/9) + c

I = (9x^2sin(3x) +18xcos(3x) -2sin(3x))/9 + c