How do you integrate int tsin(2t) by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer t0hierry Aug 14, 2016 I = -t cos(2t)/2 + 1/4 sin(2t) Explanation: Set sin(2t)dt = dv then v = -cos(2t)/2 u = t du = dt Using int udv = [uv] - int v du now you get I = -t cos(2t)/2 + 1/2 int cos(2t) dt I = -t cos(2t)/2 + 1/4 sin(2t) Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 2078 views around the world You can reuse this answer Creative Commons License