How do you integrate int tsin(2t) by integration by parts method?

1 Answer
Aug 14, 2016

I = -t cos(2t)/2 + 1/4 sin(2t)

Explanation:

Set sin(2t)dt = dv
then v = -cos(2t)/2
u = t
du = dt

Using int udv = [uv] - int v du
now you get
I = -t cos(2t)/2 + 1/2 int cos(2t) dt
I = -t cos(2t)/2 + 1/4 sin(2t)