How do you integrate int t^2 * cos(1-t^3) dt? Calculus Techniques of Integration Integration by Parts 1 Answer maganbhai P. Jun 13, 2018 I=-1/3*sin(1-t^3)+c Explanation: Here, I=intt^2*cos(1-t^3)dt=intcos(1-t^3)*t^2dt Let, 1-t^3=u=>-3t^2dt=du=>t^2dt=-1/3du So, I=intcosu(-1/3)du =>I=-1/3int cosudu =>I=-1/3 (sinu)+c Subst. back, u=1-t^3 ,we get I=-1/3*sin(1-t^3)+c Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 3872 views around the world You can reuse this answer Creative Commons License