How do you integrate int t^2 * cos(1-t^3) dt?

1 Answer
Jun 13, 2018

I=-1/3*sin(1-t^3)+c

Explanation:

Here,

I=intt^2*cos(1-t^3)dt=intcos(1-t^3)*t^2dt

Let, 1-t^3=u=>-3t^2dt=du=>t^2dt=-1/3du

So,

I=intcosu(-1/3)du

=>I=-1/3int cosudu

=>I=-1/3 (sinu)+c

Subst. back, u=1-t^3 ,we get

I=-1/3*sin(1-t^3)+c