How do you integrate #int sinxln(cosx)# by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Cesareo R. Aug 11, 2016 # -cos(x)loge(cos(x))+cos(x) + C# Explanation: #d/(dx)(cos(x)log_e(cos(x)))=-sin(x) log_e(cos(x))-sin(x)# so #int sin(x) log_e(cos(x))dx =# #= -int d/(dx)(cos(x)log_e(cos(x)))dx-int sin(x) dx = # #= -cos(x)loge(cos(x))+cos(x) + C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 1348 views around the world You can reuse this answer Creative Commons License