How do you integrate #int (sinx)(5^x)# using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer GiĆ³ Jan 22, 2016 I found: #((-5^x)[cos(x)-ln(5)sin(x)])/(1+ln^2(5))# Explanation: Try this: Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 2005 views around the world You can reuse this answer Creative Commons License