How do you integrate int sin(sqrtx) by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Cesareo R. Sep 2, 2016 2sin(sqrt(x))-2 sqrt(x) cos(sqrt(x))+C Explanation: Making x = y^2 in int sin(sqrtx)dx after dx = 2 y dy we have int sin(sqrtx)dx equiv 2inty sin y dy but d/(dy)(y cos y) = cosy -y sin y so 2inty sin y dy=2int cos y dy -2y cos y = 2sin y -2y cos y + C Finally int sin(sqrtx)dx = 2sin(sqrt(x))-2 sqrt(x) cos(sqrt(x))+C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1558 views around the world You can reuse this answer Creative Commons License