How do you integrate #int sin(sqrtx)# by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Cesareo R. Sep 2, 2016 # 2sin(sqrt(x))-2 sqrt(x) cos(sqrt(x))+C# Explanation: Making #x = y^2# in #int sin(sqrtx)dx# after #dx = 2 y dy# we have #int sin(sqrtx)dx equiv 2inty sin y dy# but #d/(dy)(y cos y) = cosy -y sin y# so #2inty sin y dy=2int cos y dy -2y cos y = 2sin y -2y cos y + C# Finally #int sin(sqrtx)dx = 2sin(sqrt(x))-2 sqrt(x) cos(sqrt(x))+C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 1412 views around the world You can reuse this answer Creative Commons License