How do you integrate int sin(lnx) using integration by parts?

1 Answer
Nov 3, 2015

1/2([xsin(ln(x))]-[xcos(ln(x))])

Explanation:

intsin(ln(x))dx

Let's u = ln(x)

du = dx/x

dx=xdu

x=e^u

then

inte^usin(u)du

By part : dv = e^u ; v = e^u ; w = sin(u) ; dw = cos(u)

[v*w]-intdw*v

inte^usin(u)du=[e^usin(u)]-inte^ucos(u)du

By part again

dv=e^u ; v = e^u ; w = cos(u) ; dw = -sin(u)

inte^usin(u)du=[e^usin(u)]-([e^ucos(u)]+inte^usin(u)du)

inte^usin(u)du=[e^usin(u)]-[e^ucos(u)]-inte^usin(u)du

2inte^usin(u)du=[e^usin(u)]-[e^ucos(u)]

inte^usin(u)du=1/2([e^usin(u)]-[e^ucos(u)])

Substitute back for u = ln(x)

intsin(ln(x))dx=1/2([xsin(ln(x))]-[xcos(ln(x))])