How do you integrate int sin^3x∫sin3x by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Eddie Aug 2, 2016 =1/3 cos^3 - cos x + C=13cos3−cosx+C Explanation: int \ sin^3 x \ dx = int \d/dx (-cos x) sin^2 x \ dx which by IBP =-cos x sin^2x + int \cos x d/dx( sin^2 x) \ dx =-cos x sin^2 x + 2 int \cos^2 x sin x \ dx =-cos x sin^2 x + 2 int \d/dx ( - 1/3 cos^3 x) \ dx =-cos x sin^2 x - 2/3 cos^3 x + C =-cos x (1 - cos^2 x) - 2/3 cos^3 x + C =-cos x + cos^3 x - 2/3 cos^3 x + C =1/3 cos^3 - cos x + C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 8585 views around the world You can reuse this answer Creative Commons License