How do you integrate int sin^2(x) dx using integration by parts?

1 Answer
Nov 3, 2015

intsin^2(x)dx=x/2-sin(2x)/4+c,
where c is the constant of integration.

Explanation:

intsin^2(x)dx=intfrac{d}{dx}(x)sin^2(x)dx

=xsin^2(x)-intxfrac{d}{dx}(sin^2(x))dx

=xsin^2(x)-intx(2sin(x)cos(x))dx

=xsin^2(x)-intxsin(2x)dx

=xsin^2(x)+1/2intxfrac{d}{dx}(cos(2x))dx

=xsin^2(x)+1/2[xcos(2x)-intfrac{d}{dx}(x)cos(2x)dx]

=xsin^2(x)+1/2xcos(2x)-1/2intcos(2x)dx

=xsin^2(x)+1/2xcos(2x)-sin(2x)/4+c,
where c is the constant of integration.

=x/2(cos(2x)+2sin^2(x))-sin(2x)/4+c

=x/2-sin(2x)/4+c