How do you integrate int sin^-1x by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Cem Sentin Apr 8, 2018 xarcsinx+sqrt(1-x^2)+C Explanation: After choosing u=arcsinx and dv=dx, du=(dx)/sqrt(1-x^2) and v=x Hence, int arcsinx*dx=xarcsinx-int x*(dx)/sqrt(1-x^2) =xarcsinx-int (xdx)/sqrt(1-x^2) =xarcsinx+sqrt(1-x^2)+C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 43203 views around the world You can reuse this answer Creative Commons License