How do you integrate int sin^-1x by integration by parts method?

1 Answer
Apr 8, 2018

xarcsinx+sqrt(1-x^2)+C

Explanation:

After choosing u=arcsinx and dv=dx, du=(dx)/sqrt(1-x^2) and v=x

Hence,

int arcsinx*dx=xarcsinx-int x*(dx)/sqrt(1-x^2)

=xarcsinx-int (xdx)/sqrt(1-x^2)

=xarcsinx+sqrt(1-x^2)+C