How do you integrate int ln x^2 dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Leland Adriano Alejandro Jan 17, 2016 int ln x^2 dx=x* ln x^2 - 2x + C Explanation: The formula int u *dv= u*v-int v* du the given int ln x^2 dx Let u=ln x^2 dv =dx v=x du=2x*dx/x^2=2* dx/x int ln x^2 dx=x*ln x^2 - int x*2*dx/x+C int ln x^2 dx=x*ln x^2 - int 2*dx+C int ln x^2 dx=x* ln x^2 - 2x + C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1386 views around the world You can reuse this answer Creative Commons License