How do you integrate #int ln x^2 dx # using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Leland Adriano Alejandro Jan 17, 2016 #int ln x^2 dx=x* ln x^2 - 2x + C# Explanation: The formula #int u *dv= u*v-int v* du# the given #int ln x^2 dx# Let #u=ln x^2# #dv =dx# #v=x# #du=2x*dx/x^2=2* dx/x# #int ln x^2 dx=x*ln x^2 - int x*2*dx/x+C# #int ln x^2 dx=x*ln x^2 - int 2*dx+C# #int ln x^2 dx=x* ln x^2 - 2x + C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 1228 views around the world You can reuse this answer Creative Commons License