How do you integrate int ln(3x) by parts?
2 Answers
Mar 12, 2017
Explanation:
Integration by parts tells us that:
int u(x)v'(x) dx = u(x)v(x) - int v(x) u'(x) dx
In our example, put:
{ (u(x) = ln(3x)), (v(x) = x) :}
Then:
{ (u'(x) = 3*1/(3x) = 1/x), (v'(x) = 1) :}
So we find:
int ln(3x) dx = int u(x)v'(x) dx
color(white)(int ln(3x) dx) = u(x)v(x) - int v(x)u'(x) dx
color(white)(int ln(3x) dx) = xln(3x) - int x*1/x dx
color(white)(int ln(3x) dx) = xln(3x) - int 1 dx
color(white)(int ln(3x) dx) = xln(3x) - x + C
color(white)(int ln(3x) dx) = x(ln(3x) - 1) + C
Mar 12, 2017
The answer is
Explanation:
Let
Therefore,