How do you integrate int ln 2x^2 dx using integration by parts?

1 Answer
Jul 12, 2016

reading this as : int \ ln(2x^2) \ dx

then

= x ( ln2x^2 - 2) + C

Explanation:

int \ ln(2x^2) \ dx

using IBP

= int \d/dx(x) * ln2x^2 \ dx

= x * ln2x^2 - int \ x * d/dx ( ln2x^2) \ dx

= x ln2x^2 - int \ x * 1/(2x^2) 4x \ dx

= x ln2x^2 - 2 int \ dx

= x ln2x^2 - 2x + C

= x ( ln2x^2 - 2) + C