We use the integration by parts
intuv'dx=uv-intu'vdx
Here,
u=sin4x, =>, u'=4cos4x
v'=e^(-x), =>, v=-e^(-x)
inte^(-x)sin4xdx=-e^(-x)sin4x-int4*-e^(-x)cos4xdx
=-e^(-x)sin4x+4inte^(-x)cos4xdx
For the integral inte^(-x)cos4xdx, we apply the integration by parts a second time
u=cos4x, =>, u'=-4sin4x
v'=e^(-x), =>, v=-e^(-x)
inte^(-x)cos4xdx=-e^(-x)cos4x-4inte^(-x)sin4xdx
Putting it all together
inte^(-x)sin4xdx=-e^(-x)sin4x+4(-e^(-x)cos4x-4inte^(-x)sin4xdx)
=-e^(-x)sin4x-4e^(-x)cos4x-16inte^(-x)sin4xdx
Therefore,
17inte^(-x)sin4xdx=-e^(-x)(sin4x+4cos4x)
inte^(-x)sin4xdx=(-e^(-x)(sin4x+4cos4x))/17+C