How do you integrate int e^-xsin4x by integration by parts method?

1 Answer
Dec 24, 2016

The answer is =(-e^(-x)(sin4x+4cos4x))/17+C

Explanation:

We use the integration by parts

intuv'dx=uv-intu'vdx

Here,

u=sin4x, =>, u'=4cos4x

v'=e^(-x), =>, v=-e^(-x)

inte^(-x)sin4xdx=-e^(-x)sin4x-int4*-e^(-x)cos4xdx

=-e^(-x)sin4x+4inte^(-x)cos4xdx

For the integral inte^(-x)cos4xdx, we apply the integration by parts a second time

u=cos4x, =>, u'=-4sin4x

v'=e^(-x), =>, v=-e^(-x)

inte^(-x)cos4xdx=-e^(-x)cos4x-4inte^(-x)sin4xdx

Putting it all together

inte^(-x)sin4xdx=-e^(-x)sin4x+4(-e^(-x)cos4x-4inte^(-x)sin4xdx)

=-e^(-x)sin4x-4e^(-x)cos4x-16inte^(-x)sin4xdx

Therefore,

17inte^(-x)sin4xdx=-e^(-x)(sin4x+4cos4x)

inte^(-x)sin4xdx=(-e^(-x)(sin4x+4cos4x))/17+C