How do you integrate int e^xcos(2x) by parts?

1 Answer
Jan 14, 2017

int e^x cos(2x) dx = 1/5(e^xcos2x+2e^xsin2x) + C

Explanation:

As d(e^x) = e^xdx we can integrate by parts as:

int e^x cos(2x) dx = int cos(2x) d(e^x) = e^xcos2x + 2int e^xsin(2x)dx

We integrate the resulting integral by parts again:

int e^xsin(2x)dx = int sin(2x)d(e^x) = e^xsin2x -2int e^xcos(2x)dx

So if we name:

I = int e^x cos(2x) dx

we get the following equation:

I = e^xcos2x+2e^xsin2x-4I

and solving for I:

I= 1/5(e^xcos2x+2e^xsin2x)

so that:

int e^x cos(2x) dx = 1/5(e^xcos2x+2e^xsin2x) + C