I = int e^-x*cos2x \ dx
using IBP
I = int (-e^-x)'*cos2x \ dx
I = -e^-x*cos2x - int -e^-x (cos 2x)' \ dx
= -e^-x*cos2x - 2int \e^-x sin 2x \ dx
= -e^-x*cos2x - 2J
J = int \e^-x sin 2x \ dx
= int (-\e^-x)' sin2x \ dx
= -e^-x sin 2x - int -\e^-x (sin 2x)' \ dx
= -e^-x sin 2x + 2 int \e^-x cos 2x \ dx
= -e^-x sin x + 2I
I = -e^-x cos2x - 2(- \e^-x sin 2x + 2I)
= -e^-x cos2x + 2 e^-x sin 2x -4I + C
5I = -e^-x cos2x + 2 e^-x sin 2x + C
I = -1/5 e^-x cos2x + 2 e^-x sin 2x + C