How do you integrate int e^-x*cos2xdx using integration by parts?

1 Answer
Jul 12, 2016

= -1/5 e^-x*cos2x + 2 e^-x sin 2x + C

Explanation:

I = int e^-x*cos2x \ dx

using IBP

I = int (-e^-x)'*cos2x \ dx

I = -e^-x*cos2x - int -e^-x (cos 2x)' \ dx

= -e^-x*cos2x - 2int \e^-x sin 2x \ dx

= -e^-x*cos2x - 2J

J = int \e^-x sin 2x \ dx

= int (-\e^-x)' sin2x \ dx

= -e^-x sin 2x - int -\e^-x (sin 2x)' \ dx

= -e^-x sin 2x + 2 int \e^-x cos 2x \ dx

= -e^-x sin x + 2I

I = -e^-x cos2x - 2(- \e^-x sin 2x + 2I)

= -e^-x cos2x + 2 e^-x sin 2x -4I + C

5I = -e^-x cos2x + 2 e^-x sin 2x + C

I = -1/5 e^-x cos2x + 2 e^-x sin 2x + C