How do you integrate int e^x cos x dx using integration by parts?

1 Answer
Jun 22, 2016

1/2 e^x (cos x + sin x) + C

Explanation:

int \ e^x cos x \ dx

= \mathcal{Re} ( int \ e^x (cos x + i \ sin x) \ dx )

= \mathcal{Re} ( int \ e^x e^{i x} \ dx)

= \mathcal{Re} ( int \ e^{(1+i)x} \ dx)

= \mathcal{Re} ( 1/(1 + i ) e^{(1+i)x} )

= e^x \mathcal{Re} ( 1/(1 + i ) e^{ix} )

= e^x \mathcal{Re} ( (1-i)/((1 + i)(1-i) ) (cos x + i sin x) )

= e^x \mathcal{Re} ( (1-i)/(2) (cos x + i sin x) )

=1/2 e^x \mathcal{Re} ( (1-i) (cos x + i sin x) )

=1/2 e^x \mathcal{Re} (cos x + i sin x - i cos x + sin x )

=1/2 e^x \mathcal{Re} ((cos x + sin x) + i( sin x - cos x) )

=1/2 e^x (cos x + sin x) + C