How do you integrate int e^sqrtx by integration by parts method?

1 Answer
Sep 25, 2016

2e^sqrtx(sqrtx-1)+C

Explanation:

inte^sqrtxdx

Let t=sqrtx. This also implies that t^2=x, and this makes finding dx easier, in that we easily see that 2tdt=dx. Thus:

inte^sqrtxdx=int2te^tdt=2intte^tdt

Now, using integration by parts, which takes the form intudv=uv-intvdu. Let:

{(u=t" "=>" "du=dt),(dv=e^tdt" "=>" "v=e^t):}

Thus:

2intte^tdt=2[te^t-inte^tdt]=2te^t-2e^t+C

Factoring and back-substituting with t=sqrtx:

inte^sqrtxdx=2e^sqrtx(sqrtx-1)+C