How do you integrate int e^sqrtx by integration by parts method?
1 Answer
Sep 25, 2016
Explanation:
inte^sqrtxdx
Let
inte^sqrtxdx=int2te^tdt=2intte^tdt
Now, using integration by parts, which takes the form
{(u=t" "=>" "du=dt),(dv=e^tdt" "=>" "v=e^t):}
Thus:
2intte^tdt=2[te^t-inte^tdt]=2te^t-2e^t+C
Factoring and back-substituting with
inte^sqrtxdx=2e^sqrtx(sqrtx-1)+C