How do you integrate int e^(3x)cosx by integration by parts method?

2 Answers
Jul 22, 2016

int e^(3x)cosx dx = e^{3x}/10(3cos(x)+sin(x))

Explanation:

This kind of integral can be straightforward solved using Moivre's identity

e^{i x} = cos x + i sin x so

int e^(3x)cosx dx = "Real"(int e^(3x)(cosx +i sin x)dx) or
int e^(3x)cosx dx = "Real"(int e^{3x+ix}dx) = "Real"(e^{3x+ix}/(3+i))

then

int e^(3x)cosx dx ="Real"((3-i)e^{3x}(cosx +i sin x)/((3-i)(3+i)))

Finally

int e^(3x)cosx dx = e^{3x}/10(3cos(x)+sin(x))

Jul 22, 2016

We can IBP this both ways

First approach

I = int e^(3x)cosx \ dx

= int d/dx( 1/3e^(3x)) cosx \ dx

which by IBP

= 1/3e^(3x) cosx - int 1/3e^(3x) d/dx( cosx )\ dx

= 1/3e^(3x) cosx + int 1/3e^(3x) sin x \ dx

preparing for second IBP

= 1/3e^(3x) cosx + int d/dx( 1/9e^(3x)) sin x \ dx

by IBP
= 1/3e^(3x) cosx + 1/9e^(3x) sin x - int 1/9e^(3x) d/dx (sin x) \ dx

= 1/3e^(3x) cosx + 1/9e^(3x) sin x - int 1/9e^(3x) cos \ dx

implies I = 1/3e^(3x) cosx + 1/9e^(3x) sin x -I/9 + C

I = 9/10 (1/3e^(3x) cosx + 1/9e^(3x) sin x ) + C

I = e^(3x)/10( 3 cosx + sin x) + C

Second Approach

I = int e^(3x)cosx \ dx

= int e^(3x) d/dx(sinx) \ dx

= e^(3x) sinx - int d/dx(e^(3x)) sin x \ dx + C

= e^(3x) sinx - int 3e^(3x) sin x \ dx + C

Preparing for second IBP

= e^(3x) sinx - int 3e^(3x) d/dx(- cos x) \ dx + C

= e^(3x) sinx + 3e^(3x) cosx - int d/dx (3e^(3x)) cos x \ dx + C

= e^(3x) sinx + 3e^(3x) cosx - int 9e^(3x) cos x \ dx + C

= e^(3x) sinx + 3e^(3x) cosx - 9I + C

implies 10 I = e^(3x) sinx + 3e^(3x) cosx + C

I = e^(3x)/10 ( sinx + 3 cosx ) + C

Same result, second way maybe a little bit snappier.