How do you integrate int e^(2x)cosx by integration by parts method?

1 Answer
Sep 4, 2016

I = e^(2x) (1/5 sin x + 2/5 cos x) + C

Explanation:

I = int e^(2x)cosx \ dx

= int e^(2x) (sin x)' \ dx

= e^(2x) sin x - int (e^(2x))' sin x \ dx

= e^(2x) sin x - 2 int e^(2x) sin x \ dx

= e^(2x) sin x - 2 int e^(2x) (-cos x)' \ dx

= e^(2x) sin x - 2 ( e^(2x) (-cos x) - int (e^(2x))' (-cos x) \ dx)

= e^(2x) sin x - 2 ( -e^(2x) cos x + 2 int e^(2x) cos x \ dx)

= e^(2x) sin x - 2 ( -e^(2x) cos x + 2 I + C)

= e^(2x) sin x + 2 e^(2x) cos x - 4 I + C

5 I = e^(2x) sin x + 2 e^(2x) cos x + C

I = e^(2x) (1/5 sin x + 2/5 cos x) + C