How do you integrate int cosxln(sinx) using integration by parts?

1 Answer
Nov 22, 2016

It is the same as int lnt dt

Explanation:

Let u = ln(sinx) and dv = cosx dx.

This makes du = 1/sinx cosx dx and v = sinx

uv-vdu = sinx ln(sinx) - int sinx(1/sinx cosx) dx

= sinx ln(sinx) - int cosx dx

= sinx ln(sinx) - sinx +C.

Note if you know int ln t dt

If you know that int lnt dt = tlnt - t +C, then you can simply substitue t = sinx.