How do you integrate int arctanx by integration by parts method?

1 Answer
Sep 11, 2016

xarctan(x)-1/2ln(1+x^2)+C

Explanation:

We have:

intarctan(x)dx

And we will use the integration by parts formula:

intudv=uv-intvdu

So, we set intudv=intarctan(x)dx, so we let:

{:(u=arctan(x)," "" ",dv=dx),(" "" "darr," "" "," "darr),(du=1/(1+x^2)dx," "" ",v=x):}

Thus:

intarctan(x)dx=xarctan(x)-intx/(1+x^2)dx

Solving the second integral:

=xarctan(x)-1/2int(2x)/(1+x^2)dx

Let u=1+x^2 so du=2xdx:

=xarctan(x)-1/2int(du)/u

=xarctan(x)-1/2lnabsu

=xarctan(x)-1/2ln(1+x^2)+C