How do you integrate #int 3 xln x^2 dx # using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Narad T. Feb 12, 2017 The answer is #=3x^2ln(|x|)-3/2x^2+C# Explanation: Integration by parts is #intu'vdx=uv-intuv'dx# Here, we have #int3xln(x^2)dx=6intxlnxdx# #v=lnx#, #=>#, #v'=1/x# #u'=x#, #=>#, #u=x^2/2# Therefore, #int3xln(x^2)dx=6(1/2x^2lnx-int1/2xdx)# #=3x^2lnx-3*1/2*x^2# #=3x^2ln(|x|)-3/2x^2+C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 2664 views around the world You can reuse this answer Creative Commons License