How do you integrate int (2+sin(x/2))^2 cos(x/2)dx using integration by parts?

1 Answer
Jan 9, 2016

I = 10sin(x/2) -2cos(x) -2sin(x/2) + 2/3sin^3(x/2) + c

Explanation:

For a non-parts approach

I = int(2+sin(x/2))^2cos(x/2)dx

Expanding that

I = int(4+4sin(x/2)+sin^2(x/2))cos(x/2)dx

And that

I = int4cos(x/2)dx + int4sin(x/2)cos(x/2)dx + intsin^2(x/2)cos(x/2)dx

The first integral is easy

I = 8sin(x/2) + int4sin(x/2)cos(x/2)dx + intsin^2(x/2)cos(x/2)dx

The second is easy if you remember that

sin(alphax)cos(alphax) = sin(2alphax)/2, so

I = 8sin(x/2) + int2sin(x)dx + intsin^2(x/2)cos(x/2)dx
I = 8sin(x/2) -2cos(x) + intsin^2(x/2)cos(x/2)dx

If you remember sin^2(theta) = 1 -cos^2(theta)

I = 8sin(x/2) -2cos(x) + int(1 - cos^2(x/2))cos(x/2)dx
I = 8sin(x/2) -2cos(x) + intcos(x/2)dx - intcos^3(x/2)dx
I = 8sin(x/2) -2cos(x) + 2sin(x/2)- intcos^3(x/2)dx

And now, use cos^2(x/2) = 1 - sin^2(x/2)

I = 10sin(x/2) -2cos(x) - int(1-sin^2(x/2))cos(x/2)dx

Say u = sin(x/2) so du = cos(x/2)/2

I = 10sin(x/2) -2cos(x) -2 int(1-sin^2(x/2))cos(x/2)/2dx
I = 10sin(x/2) -2cos(x) -2 int(1-u^2)du
I = 10sin(x/2) -2cos(x) -2u + (2u^3)/3 + c

Switching it back to x

I = 10sin(x/2) -2cos(x) -2sin(x/2) + 2/3sin^3(x/2) + c