For a non-parts approach
I = int(2+sin(x/2))^2cos(x/2)dx
Expanding that
I = int(4+4sin(x/2)+sin^2(x/2))cos(x/2)dx
And that
I = int4cos(x/2)dx + int4sin(x/2)cos(x/2)dx + intsin^2(x/2)cos(x/2)dx
The first integral is easy
I = 8sin(x/2) + int4sin(x/2)cos(x/2)dx + intsin^2(x/2)cos(x/2)dx
The second is easy if you remember that
sin(alphax)cos(alphax) = sin(2alphax)/2, so
I = 8sin(x/2) + int2sin(x)dx + intsin^2(x/2)cos(x/2)dx
I = 8sin(x/2) -2cos(x) + intsin^2(x/2)cos(x/2)dx
If you remember sin^2(theta) = 1 -cos^2(theta)
I = 8sin(x/2) -2cos(x) + int(1 - cos^2(x/2))cos(x/2)dx
I = 8sin(x/2) -2cos(x) + intcos(x/2)dx - intcos^3(x/2)dx
I = 8sin(x/2) -2cos(x) + 2sin(x/2)- intcos^3(x/2)dx
And now, use cos^2(x/2) = 1 - sin^2(x/2)
I = 10sin(x/2) -2cos(x) - int(1-sin^2(x/2))cos(x/2)dx
Say u = sin(x/2) so du = cos(x/2)/2
I = 10sin(x/2) -2cos(x) -2 int(1-sin^2(x/2))cos(x/2)/2dx
I = 10sin(x/2) -2cos(x) -2 int(1-u^2)du
I = 10sin(x/2) -2cos(x) -2u + (2u^3)/3 + c
Switching it back to x
I = 10sin(x/2) -2cos(x) -2sin(x/2) + 2/3sin^3(x/2) + c