How do you integrate -1 / (x(ln x)^2)?
1 Answer
Jun 11, 2016
Explanation:
We have:
int-1/(x(lnx)^2)dx=-int(lnx)^-2/xdx
We can use substitution here, since the derivative of
Let
We then have:
-int(lnx)^-2/xdx=-int(lnx)^-2(1/x)dx=-intu^-2du
Integrate this with the rule:
Thus,
-intu^-2du=-(u^(-2+1)/(-2+1))+C=-(u^-1/(-1))+C=1/u+C
Since
=1/lnx+C