How do you integrate -1 / (x(ln x)^2)?

1 Answer
Jun 11, 2016

1/lnx+C

Explanation:

We have:

int-1/(x(lnx)^2)dx=-int(lnx)^-2/xdx

We can use substitution here, since the derivative of lnx, which is 1/x, is present alongside lnx.

Let u=lnx such that du=1/xdx.

We then have:

-int(lnx)^-2/xdx=-int(lnx)^-2(1/x)dx=-intu^-2du

Integrate this with the rule: intu^ndu=u^(n+1)/(n+1)+C, where n!=1.

Thus,

-intu^-2du=-(u^(-2+1)/(-2+1))+C=-(u^-1/(-1))+C=1/u+C

Since u=lnx,

=1/lnx+C