Calculate the first derivative using the product rule:
#(dz)/dx = d/dx ( xsqrt(x+1) ) = (d/dx x) sqrt(x+1) + x (d/dx sqrt(x+1))#
#(dz)/dx = sqrt(x+1) + x/(2sqrt(x+1))#
Simplifying:
#(dz)/dx = (2(x+1) + x)/(2sqrt(x+1)) = (3x+2)/(2sqrt(x+1))#
Differentiate again using the quotient rule:
#(d^2z)/dx^2 = d/dx ((3x+2)/(2sqrt(x+1)))#
#(d^2z)/dx^2 = ((2sqrt(x+1))d/dx (3x+2) - (3x+2)(d/dx 2sqrt(x+1)) )/(2sqrt(x+1))^2#
#(d^2z)/dx^2 = ((6sqrt(x+1)) - (3x+2)/sqrt(x+1)) /(4(x+1))#
#(d^2z)/dx^2 = (6x+6 - 3x-2) /(4(x+1)^(3/2))#
#(d^2z)/dx^2 = (3x+4) /(4(x+1)^(3/2))#