How do you find the power series representation for the function f(x)=tan^(-1)(x) ?

1 Answer
Sep 20, 2014

f(x)=tan^{-1}x=sum_{n=0}^infty(-1)^n x^{2n+1}/{2n+1}

Let us look at some details.

Let us find the power series for f'(x)

By taking the derivative,

f'(x)=1/{1+x^2}=1/{1-(-x^2)}

We know the power series

1/{1-x}=sum_{n=0}^infty x^n

by replacing x by -x^2,

Rightarrow1/{1-(-x^2)}=sum_{n=0}^infty(-x^2)^n

So, we have

f'(x)=sum_{n=0}^infty(-1)^nx^{2n}

By integrating f'(x),

f(x)=int sum_{n=0}^infty (-1)^nx^{2n}dx=sum_{n=0}^infty(-1)^n x^{2n+1}/{2n+1}+C

Since f(0)=tan^{-1}(0)=0, C=0.

Hence,

tan^{-1}x=sum_{n=0}^infty(-1)^n x^{2n+1}/{2n+1}