How do you find the power series representation for the function f(x)=1/((1+x)^2) ?

2 Answers
Sep 7, 2014

By Binomial Series,
1/{(1+x)^2}=(1+x)^{-2}=sum_{n=0}^{infty}(-1)^n(n+1)x^n

Let us review the binomial series.
(1+x)^{alpha}=sum_{n=0}^{infty}C(alpha,n)x^n,
where C(alpha,n) is a binomial coefficient defined by
C(alpha,n)={alpha(alpha-1)(alpha-2)cdot cdots cdot(alpha-n+1)}/{n!}

Let us first the binomial coefficients for f(x)=(1+x)^{-2}.
Since alpha=-2, its binomial coefficient looks like
C(-2,n)={-2(-2-1)(-2-2)cdot cdots cdot[-2-(n-1)]}/{n!}
={-2(-3)(-4)cdots[-(n+1)]}/{n!}
by factoring out all -'s in the numerator,
={(-1)^n[2cdot3cdot4cdot cdots cdot(n+1)]}/{n!}={(-1)^n(n+1)!}/{n!}
by dividing the numerator and the denominator by n!,
=(-1)^n(n+1)

Hence, we have the binomial series
1/{(1+x)^2}=sum_{n=0}^{infty}(-1)^n(n+1)x^n.

Mar 11, 2017

1/(1+x)^2=sum_(n=0)^oo(-1)^(n+1)nx^(n-1) for absx<1

Explanation:

We have the standard power series:

1/(1-color(blue)x)=sum_(n=0)^oocolor(blue)x^n

From this we write the power series for 1/(1+x):

1/(1+x)=1/(1-color(blue)((-x)))=sum_(n=0)^oo(color(blue)(-x))^n=sum_(n=0)^oo(-1)^nx^n

Note that 1/(x+1)=(x+1)^-1, so d/dx(1/(1+x))=-(x+1)^-2:

d/dx(1/(1+x))=(-1)/(x+1)^2=d/dxsum_(n=0)^oo(-1)^nx^n

Which can be rewritten as:

(-1)/(1+x)^2=sum_(n=0)^oo(-1)^nd/dxx^n=sum_(n=0)^oo(-1)^n(nx^(n-1))

Reversing the signs by multiplying both sides by -1:

1/(1+x)^2=-sum_(n=0)^oo(-1)^n(nx^(n-1))=sum_(n=0)^oo(-1)^(n+1)nx^(n-1)

Which is convergent for absx<1.