Question #87417

1 Answer
Jul 22, 2017

See bellow.

Explanation:

Calling S_n = sum_(nu=1)^(nu=n)nu^k we have

S_(n-1) < n^(k+1)/(k+1) < S_n or

0 < n^(k+1)/(k+1)-S_(n-1) < n^k or

0 < n/(k+1) - sum_(nu=1)^(nu=n-1)(nu/n)^k < 1

but

n sum_(nu=1)^(nu=n-1)(nu/n)^k1/n < n int_0^1 xi^k d xi = n/(k+1) or

n sum_(nu=1)^(nu=n-1)(nu/n)^k1/n =n/(k+1)-delta^2 so substituting

0 < delta^2 < 1

NOTE:

sum_(nu=1)^(nu=n-1)(nu/n)^k1/n < int_0^1 xi^k d xi

because xi^k is a monotonically increasing function.