Calling S_n = sum_(nu=1)^(nu=n)nu^k we have
S_(n-1) < n^(k+1)/(k+1) < S_n or
0 < n^(k+1)/(k+1)-S_(n-1) < n^k or
0 < n/(k+1) - sum_(nu=1)^(nu=n-1)(nu/n)^k < 1
but
n sum_(nu=1)^(nu=n-1)(nu/n)^k1/n < n int_0^1 xi^k d xi = n/(k+1) or
n sum_(nu=1)^(nu=n-1)(nu/n)^k1/n =n/(k+1)-delta^2 so substituting
0 < delta^2 < 1
NOTE:
sum_(nu=1)^(nu=n-1)(nu/n)^k1/n < int_0^1 xi^k d xi
because xi^k is a monotonically increasing function.