How do you find the integration of #sinx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Azhar A. · Ernest Z. Jul 14, 2015 The answer will be #int(sin x)dx=-cos x + c# Explanation: We know that the #int(sinx)dx=-cos x+c# This is the fundamental rule of integration. Where #c# is the integral constant. Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 2082 views around the world You can reuse this answer Creative Commons License