How do I evaluate the indefinite integral ∫tan2(x)dx ?
1 Answer
Jul 30, 2014
=tanx−x+c , wherec is a constantUsing Trigonometric Identity, which is
sec2x−tan2x=1
tan2x=sec2x−1 Using this Trigonometric Identity in integration,
=∫(sec2x−1)dx
=∫sec2xdx−∫dx
=tanx−x+c , wherec is a constant