How do you find the integral of x^5*e^(x^2) ?

1 Answer
Apr 25, 2018

1/2x^4e^(x^2)-x^2e^(x^2)+e^(x^2)+C

Explanation:

intx^5*e^(x^2)dx

=1/2intx^4e^(x^2)*2xdx

=1/2intx^4e^(x^2)dx^2

Integration by substitution

x^2=u

d(x^2)=du

=1/2intx^4e^(x^2)dx^2=1/2intu^2e^udu

Integration by Parts

=1/2intu^2d(e^u)

=1/2(u^2e^u-int2ue^udu)

Using integration by Parts again

=1/2(u^2e^u-2intud(e^u))

=1/2(u^2e^u-2ue^u-(-2inte^udu))

=1/2u^2e^u-ue^u+e^u+C

Reverse The Substitution

=1/2x^4e^(x^2)-x^2e^(x^2)+e^(x^2)+C