How do you find the integral of #(sec^2 x)(tan^2 x) dx#? Calculus Techniques of Integration Integration by Parts 1 Answer Akshat Jun 22, 2018 #(tan^3x)/3+C# Explanation: By making a substitution, #tanx#= #U#, you will get #dU# = #sec^2xdx#. Therefore, #dx#= #(dU)/sec^2x#. Then the integral will become: #intU^2dU#. Substitute the value of U and obtain the result. Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 2188 views around the world You can reuse this answer Creative Commons License