How do you find the integral of (e^(8x))sin(9x)dx?

1 Answer
Mar 7, 2018

\inte^(8x)sin(9x) dx=1/145e^(8x)(8sin(9x)-9cos(9x)) +C

Explanation:

(1) \inte^(8x)sin(9x) dx

We need to use integration by parts.

\int udv = uv - \intvdu

It's useful to remember the acronym LIATE: Log, Inverse Trig, Algebraic, Trig, Exponential for knowing the prioritization of choosing your u value.

Since trigonometric functions take precedence over exponentials, we will use u = sin(9x).

Substitution:
u= sin(9x)
du = 9cos(9x)dx
dv = e^(8x)dx
v = 1/8e^(8x)

(2) \inte^(8x)sin(9x) dx = 1/8e^(8x)sin(9x)-9/8\inte^(8x)cos(9x)dx

Since we haven't improved our situation, it looks like another round of integration by parts. Let's use the letters y and z, and let y = cos(9x) and integrate the RHS integral by parts.

\int ydz = yz - \intzdy

Substitution:
y = cos(9x)
dy = -9sin(9x)dx
dz = e^(8x)dx
z = 1/8e^(8x)

(3) \inte^(8x)cos(9x)dx = 1/8e^(8x)cos(9x)+9/8\inte^(8x)sin(9x)dx

Substituting (3) -> (2):

(4) \inte^(8x)sin(9x) dx = 1/8e^(8x)sin(9x) - 9/8 (1/8e^(8x)cos(9x)+9/8\inte^(8x)sin(9x)dx)

\inte^(8x)sin(9x) dx = 1/8e^(8x)sin(9x) - 9/64 e^(8x)cos(9x)-81/64\inte^(8x)sin(9x)dx

145/64\inte^(8x)sin(9x) dx = 1/8e^(8x)sin(9x) - 9/64 e^(8x)cos(9x)

= 64/145(1/8e^(8x)sin(9x) - 9/64 e^(8x)cos(9x)) +C

= 8/145e^(8x)sin(9x) - 9/145 e^(8x)cos(9x) +C

=1/145e^(8x)(8sin(9x)-9cos(9x)) +C