How do you find the integral of e7xsin(2x)dx?

1 Answer
Apr 11, 2018

e7xsin2xdx=e7x(7sin2x2cos2x)53+C

Explanation:

Integrate by parts:

e7xsin2xdx=sin2xd(e7x7)

e7xsin2xdx=e7xsin2x727e7xcos2xdx

and then again:

e7xsin2xdx=e7xsin2x727cos2xd(e7x7)

e7xsin2xdx=e7xsin2x72e7xcos2x49449e7xsin2xdx

The same integral now appears on both sides of the equation and we can solve for it:

5349e7xsin2xdx=e7xsin2x72e7xcos2x49+C

e7xsin2xdx=e7x(7sin2x2cos2x)53+C