How do you find the integral ln(x)x2? Calculus Techniques of Integration Integration by Parts 1 Answer bp Sep 7, 2015 −lnxx−1x+C Explanation: Integration by parts can be done in this case, ∫lnxx2dx =∫lnx⋅ddx(−1x)dx= −lnxx−∫ddx(lnx)⋅−1xdx+C= −lnxx+∫1x2dx+C= −lnxx−1x+C Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 2482 views around the world You can reuse this answer Creative Commons License