intln(x^2+x+1)dx
apply Integration by Parts
u=ln(x^2+x+1)
du=(2x+1)/(x^2+x+1)dx
dv=dx
v=x
intln(x^2+x+1)dx=xln(x^2+x+1)-int(x(2x+1))/(x^2+x+1)dx
rarr(1)
Let I=int(x(2x+1))/(x^2+x+1)dx=
simplify
int(2x^2+x)/(x^2+x+1)dx=int(x^2+x+1)/(x^2+x+1)dx+int(x^2-1)/(x^2+x+1)dx
=x+int(x^2-1)/(x^2+x+1)dx
let r=int(x^2-1)/(x^2+x+1)dx
completing the square of the denominator :
r=int(x^2-1)/((x+1/2)^2+3/4)dx
apply trigonometric substitution
x+1/2=sqrt(3)/2tantheta
dx=sqrt(3)/2sec^2theta*d(theta)
x^2=3/4tan^2theta-sqrt(3)/2tantheta+1/4
substitute
int(x^2-1)/((x+1/2)^2+3/4)dx=int((3/4tan^2theta-sqrt(3)/2tantheta+1/4)-1)/(3/4tan^2theta+3/4)sqrt(3)/2sec^2thetad(theta)
simplify where tan^2theta+1=sec^2theta
4/3*sqrt(3)/2int(3/4tan^2theta-sqrt(3)/2tantheta-3/4)d(theta)
simplify again using the relation tan^2theta+1=sec^2theta
2/sqrt3int(3/4sec^2theta-sqrt3/2tantheta-3/2)d(theta)=sqrt3/2tantheta+lncostheta-sqrt3theta+C
reverse the trigonometric substitution
theta=tan^-1(2/sqrt(3)(x+1/2))
so,
r=int(x^2-1)/(x^2+x+1)dx=(x+1/2)+lncostan^-1(2/sqrt(3)(x+1/2))-sqrt3tan^-1(2/sqrt(3)(x+1/2))+C
substituting in I:
I=x+(x+1/2)+lncostan^-1(2/sqrt(3)(x+1/2))-sqrt3tan^-1(2/sqrt(3)(x+1/2))+C
and substituting with the value of I in (1)
your final integration result will be:
intln(x^2+x+1)dx=xln(x^2+x+1)-x-(x+1/2)-lncostan^-1(2/sqrt(3)(x+1/2))+sqrt3tan^-1(2/sqrt(3)(x+1/2))+C