How do you find the first and second derivative of h(x)=sqrt(x^2+1)?

1 Answer
Mar 14, 2017

h''(x)=1/((x^2+1)sqrt(x^2+1))

Explanation:

Since:

f(x)=sqrt(g(x))->f'(x)=1/(2sqrt(g(x)))*g'(x)

the first derivative is:

h'(x)=1/(cancel2sqrt(x^2+1))*cancel2x

=x/(sqrt(x^2+1))

Since:

h(x)=g(x)/(f(x))->h'(x)=(g'(x)*f(x)-g(x)*f'(x))/(f^2(x))

the second derivative is:

h''(x)=(1*sqrt(x^2+1)-x*1/(cancel2sqrt(x^2+1))*cancel2x)/(sqrt(x^2+1))^2

=(sqrt(x^2+1)-x^2/sqrt(x^2+1))/(x^2+1)

=(cancelx^2+1-cancelx^2)/((x^2+1)sqrt(x^2+1))

=1/((x^2+1)sqrt(x^2+1))