How do you find the derivative of y=arcsin(5x+5)?

1 Answer
Mar 26, 2016

(dy)/(dx)=5/sqrt(1-(5x+5)^2)

Explanation:

If u=arcsinv then v=sinu, hence (dv)/(du)=cosu and

(du)/(dv)=1/cosu=1/sqrt(1-sin^2u)=1/sqrt(1-v^2)

Hence, we can now find the the derivative of y=arcsin(5x+5) using the concept function of a function and this is given by

(dy)/(dx)=1/sqrt(1-(5x+5)^2)xxd/(dx)(5x+5) or

(dy)/(dx)=5/sqrt(1-(5x+5)^2)