How do you find the derivative of the function y=cosh^-1((sqrt(x))y=cosh1((x)?

1 Answer
Dec 30, 2016

The answer is =1/(2sqrtxsqrt(x-1))=12xx1

Explanation:

We need

(sqrtx)'=1/(2sqrtx)

(coshx)'=sinhx

cosh^2x-sinh^2x=1

Here, we have

y=cosh^(-1)(sqrtx)

Therefore,

coshy=sqrtx

Taking the derivatives on both sides

(coshy)'=(sqrtx)'

sinhydy/dx=1/(2sqrtx)

dy/dx=1/(2sqrtxsinhy)

cosh^2y-sinh^2y=1

sinh^2y=cos^2y-1

sinh^2y=x-1

sinhy=sqrt(x-1)

Therefore,

dy/dx=1/(2sqrtxsqrt(x-1))