How do you find the derivative of f(x)= 1/(9x+6)^2f(x)=1(9x+6)2?
1 Answer
Feb 22, 2016
Explanation:
Since this is under the chain rule, then use it.
Substitute
frac{"d"u}{"d"x} = 9
So plug it in.
f'(x) = frac{"d"}{"d"x}(1/(9x + 6)^2)
= frac{"d"}{"d"x}(1/u^2)
= frac{"d"}{"d"u}(u^{-2})*frac{"d"u}{"d"x}
= (-2) * u^{-3} * (9)
= -18 / (9x + 6)^{3}
= -18 / (3^3*(3x + 2)^{3})
= -2 / (3*(3x + 2)^{3})